Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 43(7): 511-523, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177412

RESUMO

Leukocyte cell-derived chemotaxin 2 (LECT2) is a multifunctional cytokine that can bind to several receptors and mediate distinct molecular pathways in various cell settings. Changing levels of LECT2 have been implicated in multiple human disease states, including cancers. Here, we have demonstrated reduced serum levels of LECT2 in patients with epithelial ovarian cancer (EOC) and down-regulated circulating Lect2 as the disease progresses in a syngeneic mouse ID8 EOC model. Using the murine EOC model, we discovered that loss of Lect2 promotes EOC progression by modulating both tumor cells and the tumor microenvironment. Lect2 inhibited EOC cells' invasive phenotype and suppressed EOC's transcoelomic metastasis by targeting c-Met signaling. In addition, Lect2 downregulation induced the accumulation and activation of myeloid-derived suppressor cells (MDSCs). This fostered an immunosuppressive microenvironment in EOC by inhibiting T-cell activation and skewing macrophages toward an M2 phenotype. The therapeutic efficacy of programmed cell death-1 (PD-1)/PD-L1 pathway blockade for the ID8 model was significantly hindered. Overall, our data highlight multiple functions of Lect2 during EOC progression and reveal a rationale for synergistic immunotherapeutic strategies by targeting Lect2.


Assuntos
Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Imunossupressores , Modelos Animais de Doenças , Microambiente Tumoral/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
2.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188973, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659460

RESUMO

Nα-acetyltransferase 10 protein (Naa10p) is known as the catalytic subunit of N-terminal acetyltransferases A (NatA) complex, associating with Naa15p to acetylate N-termini of the human proteome. Recent investigations have unveiled additional functions for Naa10p, encompassing lysine ε-acetylation and acetyltransferase-independent activities. Its pleiotropic roles have been implicated in diverse physiological and pathological contexts. Emerging evidence has implicated Naa10p in cancer progression, demonstrating dual attributes as an oncogene or a tumor suppressor contingent on the cancer type and acetyltransferase activity context. In this comprehensive review, we present a pan-cancer analysis aimed at elucidating the intricacies underlying Naa10p dysregulation in cancer. Our findings propose the potential involvement of c-Myc as a modulatory factor influencing Naa10p expression. Moreover, we provide a consolidated summary of recent advancements in understanding the intricate molecular underpinnings through which Naa10p contributes to cancer cell proliferation and metastasis. Furthermore, we delve into the multifaceted nature of Naa10p's roles in regulating cancer behaviors, potentially attributed to its interactions with a repertoire of partner proteins. Through an exhaustive exploration of Naa10p's functions, spanning its acetylation activity and acetyltransferase-independent functionalities, this review offers novel insights with implications for targeted therapeutic strategies involving this pivotal protein in the realm of cancer therapeutics.


Assuntos
Acetiltransferases , Neoplasias , Humanos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Processamento de Proteína Pós-Traducional , Neoplasias/tratamento farmacológico , Neoplasias/genética
3.
J Biomed Sci ; 30(1): 68, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580757

RESUMO

BACKGROUND: KH-type splicing regulatory protein (KHSRP, also called KSRP), a versatile RNA-binding protein, plays a critical role in various physiological and pathological conditions through modulating gene expressions at multiple levels. However, the role of KSRP in clear cell renal cell carcinoma (ccRCC) remains poorly understood. METHODS: KSRP expression was detected by a ccRCC tissue microarray and evaluated by an in silico analysis. Cell loss-of-function and gain-of-function, colony-formation, anoikis, and transwell assays, and an orthotopic bioluminescent xenograft model were conducted to determine the functional role of KRSP in ccRCC progression. Micro (mi)RNA and complementary (c)DNA microarrays were used to identify downstream targets of KSRP. Western blotting, quantitative real-time polymerase chain reaction, and promoter- and 3-untranslated region (3'UTR)-luciferase reporter assays were employed to validate the underlying mechanisms of KSRP which aggravate progression of ccRCC. RESULTS: Our results showed that dysregulated high levels of KSRP were correlated with advanced clinical stages, larger tumor sizes, recurrence, and poor prognoses of ccRCC. Neural precursor cell-expressed developmentally downregulated 4 like (NEDD4L) was identified as a novel target of KSRP, which can reverse the protumorigenic and prometastatic characteristics as well as epithelial-mesenchymal transition (EMT) promotion by KSRP in vitro and in vivo. Molecular studies revealed that KSRP can decrease NEDD4L messenger (m)RNA stability via inducing mir-629-5p upregulation and directly targeting the AU-rich elements (AREs) of the 3'UTR. Moreover, KSRP was shown to transcriptionally suppress NEDD4L via inducing the transcriptional repressor, Wilm's tumor 1 (WT1). In the clinic, ccRCC samples revealed a positive correlation between KSRP and mesenchymal-related genes, and patients expressing high KSRP and low NEDD4L had the worst prognoses. CONCLUSION: The current findings unveil novel mechanisms of KSRP which promote malignant progression of ccRCC through transcriptional inhibition and post-transcriptional destabilization of NEDD4L transcripts. Targeting KSRP and its pathways may be a novel pharmaceutical intervention for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Proteínas de Ligação a RNA , Humanos , Regiões 3' não Traduzidas , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/metabolismo
4.
Toxicol Rep ; 9: 834-841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518413

RESUMO

Steady-calcium formula (SCF), a functional food mixture with potential of joint care, contains five major ingredients. However, the uncertain cross-reactivity among these included ingredients cannot be excluded. Hence, it is important to ensure the safety of this mixture. In this study, the safety of SCF was evaluated through in vitro genotoxicity assessment and 28-day oral toxicity study in rats. The bacterial reverse mutation test and mammalian chromosome aberration test displayed that SCF did not induce mutagenicity and clastogenicity. The 28-day repeated dose assessment of SCF in rats revealed no mortality and adverse effects in clinical signs, body weight, urinalysis, hematology, organ weight, and histopathology at all treated groups. Although some significant changes were observed in food intake and parameters of serum biochemistry at the highest dose in males, they were not dose-related and considered to be within normal range. These findings indicate that SCF does not possess genotoxic potential and no obvious evidence of subacute toxicity. These results demonstrate for the first time that the genotoxicity and subacute toxicity for SCF are negative under our experimental conditions and the no observed adverse effect level (NOAEL) of SCF may be defined as at least 5470 mg/kg/day.

5.
Cell Death Dis ; 13(11): 995, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433943

RESUMO

N-α-acetyltransferase 10 protein, Naa10p, is involved in various cellular functions impacting tumor progression. Due to its capacity to acetylate a large spectrum of proteins, both oncogenic and tumor-suppressive roles of Naa10p have been documented. Here, we report an oncogenic role of Naa10p in promoting metastasis of esophageal cancer. NAA10 is more highly expressed in esophageal cancer tissues compared to normal tissues. Higher NAA10 expression also correlates with poorer survival of esophageal cancer patients. We found that NAA10 expression was transcriptionally regulated by the critical oncogene c-Myc in esophageal cancer. Furthermore, activation of the c-Myc-Naa10p axis resulted in upregulated cell invasiveness of esophageal cancer. This increased cell invasiveness was also elucidated to depend on the enzymatic activity of Naa10p. Moreover, Naa10p cooperated with Naa15p to interact with the protease inhibitor, PAI1, and prevent its secretion. This inhibition of PAI1 secretion may derive from the N-terminal acetylation effect of the Naa10p/Naa15p complex. Our results establish the significance of Naa10p in driving metastasis in esophageal cancer by coordinating the c-Myc-PAI1 axis, with implications for its potential use as a prognostic biomarker and therapeutic target for esophageal cancer.


Assuntos
Neoplasias Esofágicas , Humanos , Acetilação , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/fisiopatologia , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo
6.
MAbs ; 14(1): 2029675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35133941

RESUMO

The functional interleukin 6 (IL-6) signaling complex is a hexameric structure composed of IL-6, IL-6Rα, and the signaling receptor gp130. There are three different modes of IL-6 signaling, classic signaling, trans-signaling, and trans-presentation, which are not functionally redundant and mediate pleiotropic effects on both physiological and pathophysiological states. Monoclonal antibodies against IL-6 or IL-6Rα have been successfully developed for clinical application. However, designing therapeutic interventions that block specific modes of IL-6 signaling in a pathologically relevant manner remains a great challenge. Here, we constructed a fusion protein Hyper-IL-6 (HyIL-6) composed of human IL-6 and IL-6Rα to develop specific blocking antibodies against the IL-6/IL-6Rα complex. We successfully screened the monoclonal antibody C14mab, which can bind to HyIL-6 with the binding constant 2.86 × 10-10 and significantly inhibit IL-6/IL-6Rα/gp130 complex formation. In vitro, C14mab effectively inhibited HyIL-6-stimulated signal transducer and activator of transcription 3 (STAT3) activation and related vascular endothelial growth factor (VEGF) induction. Moreover, C14mab efficaciously suppressed HyIL-6-induced acute phase response in vivo. Our data from hydrogen-deuterium exchange mass spectrometry demonstrate that C14mab mainly binds to site IIIa of IL-6 and blocks the final step in the interaction between gp130 and IL-6/IL-6Rα complex. Additionally, data from enzyme-linked immunosorbent assays and kinetics assays indicate that C14mab interacts simultaneously with IL-6 and IL-6Rα, while it does not interact with IL-6Rα alone. The unique features of C14mab may offer a novel alternative for IL-6 blockade and illuminate a better therapeutic intervention targeting IL-6.


Assuntos
Interleucina-6 , Receptores de Interleucina-6 , Anticorpos Monoclonais , Receptor gp130 de Citocina/química , Receptor gp130 de Citocina/metabolismo , Epitopos , Humanos , Interleucina-6/metabolismo , Receptores de Interleucina-6/química , Receptores de Interleucina-6/metabolismo , Fator A de Crescimento do Endotélio Vascular
7.
Biochim Biophys Acta Rev Cancer ; 1877(1): 188672, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953930

RESUMO

Endocan is known to be a circulating dermatan sulfate proteoglycan that regulates endothelial cell function. Dysregulation of endocan expression is observed not only in the tumor vasculature but also in cancer cells. Accumulating evidence has revealed that disordered endocan facilitates cancer progression via enhancing cancer cell proliferation, cell mobility, and cancer stemness properties. Recently, various interacting proteins and diverse subcellular localizations of endocan were identified in cancer cells. Herein, we summarize the application of endocan in cancer diagnoses and prognoses using serum and tumor specimens. We further discuss that the aberrant molecular characteristics of endocan may be due to the mislocalization of endocan in cancer cells. Defining the specific cellular roles of endocan will provide a promising diagnostic factor and therapeutic target for cancer patients.


Assuntos
Neoplasias , Proteoglicanas , Proliferação de Células , Células Endoteliais/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo
8.
Cancers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069116

RESUMO

Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers, which is the second most lethal tumor worldwide. Epigenetic deregulation is a common trait observed in HCC. Recently, increasing evidence suggested that the G9a histone methyltransferase might be a novel regulator of HCC development. However, several HCC cell lines were recently noted to have HeLa cell contamination or to have been derived from non-hepatocellular origin, suggesting that functional validation of G9a in proper HCC models is still required. Herein, we first confirmed that higher G9a messenger RNA and protein expression levels were correlated with poor overall survival (OS) and disease-free survival (DFS) rates of HCC patients from The Cancer Genome Atlas (TCGA) dataset and our recruited HCC cohort. In an in vitro functional evaluation of HCC cells, HCC36 (hepatitis B virus-positive (HBV+) and Mahlavu (HBV-)) cells showed that G9a participated in promoting cell proliferation, colony formation, and migration/invasion abilities. Moreover, orthotopic inoculation of G9a-depleted Mahlavu cells in NOD-SCID mice also resulted in a significantly decreased tumor burden compared to the control group. Furthermore, after surveying microRNA (miRNA; miR) prediction databases, we identified the liver-specific miR-122 as a G9a-targeting miRNA. In various HCC cell lines, we observed that miR-122 expression levels tended to be inversely correlated to G9a expression levels. In clinical HCC specimens, a significant inverse correlation of miR-122 and G9a mRNA expression levels was also observed. Functionally, the colony formation and invasive ability were attenuated in miR-122-overexpressing HCC cells. HCC patients with low miR-122 and high G9a expression levels had the worst OS and DFS rates compared to others. Together, our results confirmed the importance of altered G9a expression during HCC progression and discovered that a novel liver-specific miR-122-G9a regulatory axis exists.

9.
EMBO J ; 40(4): e105450, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347625

RESUMO

Wnt/ß-catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/ß-catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell-specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/ß-catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of ß-catenin to stabilize ß-catenin-TCF4 complex and facilitate the transactivation of Wnt/ß-catenin signaling targets. Accordingly, activated ß-catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/ß-catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.


Assuntos
Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Proteoglicanas/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteoglicanas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
10.
Cell Death Dis ; 11(7): 591, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719332

RESUMO

N-α-Acetyltransferase 10 protein (Naa10p) was reported to be an oncoprotein in androgen-dependent prostate cancer (PCa; ADPC) through binding and increasing transcriptional activity of the androgen receptor (AR). PCa usually progresses from an androgen-dependent to an androgen-independent stage, leading to an increase in the metastatic potential and an incurable malignancy. At present, the role of Naa10p in androgen-independent prostate cancer (AIPC) remains unclear. In this study, in silico and immunohistochemistry analyses showed that Naa10 transcripts or the Naa10p protein were more highly expressed in primary and metastatic PCa cancer tissues compared to adjacent normal tissues and non-metastatic cancer tissues, respectively. Knockdown and overexpression of Naa10p in AIPC cells (DU145 and PC-3M), respectively, led to decreased and increased cell clonogenic and invasive abilities in vitro as well as tumor growth and metastasis in AIPC xenografts. From the protease array screening, we identified a disintegrin and metalloprotease 9 (ADAM9) as a potential target of Naa10p, which was responsible for the Naa10p-induced invasion of AIPC cells. Naa10p can form a complex with ADAM9 to maintain ADAM9 protein stability and promote AIPC's invasive ability which were independent of its acetyltransferase activity. In contrast to the Naa10p-ADAM9 axis, ADAM9 exerted positive feedback regulation on Naa10p to modulate progression of AIPC in vitro and in vivo. Taken together, for the first time, our results reveal a novel cross-talk between Naa10p and ADAM9 in regulating the progression of AIPC. Disruption of Naa10p-ADAM9 interactions may be a potential intervention for AIPC therapy.


Assuntos
Proteínas ADAM/metabolismo , Androgênios/farmacologia , Proteínas de Membrana/metabolismo , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Castração , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Clonais , Modelos Animais de Doenças , Progressão da Doença , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos SCID , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Estabilidade Proteica
11.
Cancer Res ; 80(16): 3292-3304, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32561533

RESUMO

Although new generations of EGFR-tyrosine kinase inhibitors (EGFR-TKI) have been developed for the treatment of patients with non-small cell lung cancer (NSCLC) with EGFR-mutant tumors, TKI resistance often returns as a result of additional EGFR mutations. In addition to seeking for next-generation EGFR-TKI, developing novel EGFR-targeting strategies may hold the key to overcome the vicious cycle of TKI resistance. Endocan is known as a receptor tyrosine kinase ligand enhancer in tumorigenesis, but the impact of endocan on EGFR-driven NSCLC progression remains unknown. In this study, higher endocan levels were found in lung tumors compared with cancer-free tissues and correlated with poor prognosis in patients with NSCLC harboring mutant EGFR; circulating endocan levels were also significantly higher in patients with mutant EGFR. Endocan facilitated EGFR signaling via direct binding and enhancing of the EGF-EGFR interaction and supported the growth of tumors driven by mutated EGFR. Activated EGFR in turn upregulated expression of endocan via JAK/STAT3 and ERK/ELK cascades, thus forming a positive regulatory loop of endocan-EGFR signaling. On the basis of the binding region between endocan and EGFR, we designed therapeutic peptides and demonstrated promising therapeutic effects in xenografts harboring EGFR mutations including TKI-resistant T790M. Together, our findings highlight the novel interaction between endocan and EGFR and new opportunities to effectively target endocan-EGFR regulatory axis in patients with TKI-resistant NSCLC. SIGNIFICANCE: Endocan is a novel and critical regulator of EGF/EGFR signaling and serves as an alternative target of EGFR-TKI resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Proteoglicanas/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica , Genes ras/genética , Xenoenxertos , Humanos , Janus Quinases/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Proteoglicanas/antagonistas & inibidores , Proteoglicanas/genética , RNA Mensageiro/metabolismo , Receptor Cross-Talk , Fator de Transcrição STAT3/metabolismo , Regulação para Cima , Fosfatases cdc25/metabolismo
12.
Food Sci Nutr ; 8(3): 1534-1545, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32180962

RESUMO

Metastasis is the crucial mechanism to cause high mortality in lung cancer. Degradation of extracellular matrix (ECM) by proteolytic enzymes, especially matrix metalloproteinases (MMPs), is a key process for promoting cancer cell migration and invasion. Therefore, targeting MMPs might be a strategy for lung cancer metastasis suppression. Honokiol, a biological active component of Magnolia officinalis, has been indicated to suppress lung cancer tumorigenesis through epigenetic regulation. However, the regulation of MMPs-mediated migration and invasion by honokiol through epigenetic regulation in lung cancer is still a mystery. In the present study, the migration and invasion ability of H1299 lung cancer was suppressed by noncytotoxic concentrations of honokiol treatment. The proteolytic activity of MMP-9, rather than MMP-2, was inhibited in honokiol-treated H1299 cells. Honokiol-inhibited MMP-9 expression was through promoting MMP-9 protein degradation rather than suppressing transcription mechanism. Furthermore, the expression of specific histone deacetylases 6 (HDAC6) substrate, acetyl-α-tubulin, was accumulated after honokiol incubation. The disassociation of MMP-9 with hyper-acetylated heat shock protein 90 (Hsp90) was observed resulting in MMP-9 degradation after honokiol treatment. Meanwhile, honokiol-suppressed MMP-9 expression and invasion ability of H1299 lung cancer cells was rescued by HDAC6 overexpression. Accordingly, the results suggested that the suppression of migration and invasion activities by honokiol was through inhibiting HDAC6-mediated Hsp90/MMP-9 interaction and followed by MMP-9 degradation in lung cancer.

13.
Oncogene ; 39(12): 2509-2522, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31988456

RESUMO

An increasing number of enzymes involved in serine biosynthesis have been identified and correlated with malignant evolution in various types of cancer. Here we showed that the overexpression of phosphoserine aminotransferase 1 (PSAT1) is widely found in lung cancer tissues compared with nontumor tissues and predicts a poorer prognosis in patients with lung adenocarcinoma. PSAT1 expression was examined in a tissue microarray by immunohistochemistry. The data show that the knockdown of PSAT1 dramatically inhibits the in vitro and in vivo metastatic potential of highly metastatic lung cancer cells; conversely, the enforced expression of exogenous PSAT1 predominantly enhances the metastatic potential of lung cancer cells. Importantly, manipulating PSAT1 expression regulates the in vivo tumor metastatic abilities in lung cancer cells. Adjusting the glucose and glutamine concentrations did not alter the PSAT1-driven cell invasion properties, indicating that this process might not rely on the activation of its enzymatic function. RNA microarray analysis of transcriptional profiling from PSAT1 alternation in CL1-5 and CL1-0 cells demonstrated that interferon regulatory factor 1 (IRF1) acts as a crucial regulator of PSAT1-induced gene expression upon metastatic progression. Decreasing the IRF1-IFIH1 axis compromised the PSAT1-prompted transcriptional reprogramming in cancer cells. Our results identify PSAT1 as a key regulator by a novel PSAT1/IRF1 axis in lung cancer progression, which may serve as a potential biomarker and therapeutic target for the treatment of lung cancer patients.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/metabolismo , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão/enzimologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Estudos de Coortes , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Fator Regulador 1 de Interferon/antagonistas & inibidores , Interferon gama/antagonistas & inibidores , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Análise Serial de Tecidos , Transaminases , Regulação para Cima
14.
Front Oncol ; 9: 1138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781483

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a deadly disease for which no effective targeted therapeutic agent has been approved. Both AXL and c-MET have been reported to be independent prognostic factors for ESCC. Thus, inhibitors of AXL/c-MET might have great potential as targeted therapy for ESCC. In the current study, we evaluated the therapeutic potential of the AXL/c-MET selective inhibitors, R428 and cabozantinib, in cell and mouse xenograft models. We demonstrated that both R428 and cabozantinib significantly inhibited the growth of CE81T and KYSE-70 ESCC cells and showed by wound-healing assay that they both inhibited ESCC cell migration. In the animal model, ESCC xenograft models were established by injecting KYSE-70 cells with Matrigel into the upper back region of NOD-SCID male mice followed by treatment with vehicle control, R428 (50 mg/kg/day), cisplatin (1.0 mg/kg), or cabozantinib (30 mg/kg/day) for the indicated number of days. R428 alone significantly inhibited ESCC tumor growth compared to the vehicle; however, no synergistic effect with cisplatin was observed. Notably, the dramatic efficacy of cabozantinib alone was observed in the mouse xenograft model. Collectively, our study demonstrated that both cabozantinib and R428 inhibit ESCC growth in cell and xenograft models. The results reveal the great potential of using cabozantinib for targeted therapy of ESCC.

15.
Cell Physiol Biochem ; 51(1): 337-355, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30453282

RESUMO

BACKGROUND/AIMS: Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy is a clinical option for non-small cell lung cancer (NSCLC) harboring activating EGFR mutations or for cancer with wild-type (WT) EGFR when chemotherapy has failed. MET receptor activation or MET gene amplification was reported to be a major mechanism of acquired resistance to EGFR-TKI therapy in NSCLC cells. Leukocyte cell-derived chemotaxin 2 (LECT2) is a multifunctional cytokine that was shown to suppress metastasis of hepatocellular carcinoma via inhibiting MET activity. Until now, the biological function responsible for LECT2's action in human NSCLC remains unclear. METHODS: LECT2-knockout (KO) mice and NOD/SCID/IL2rgnull (NSG) mice were respectively used to investigate the effects of LECT2 on the tumorigenicity and metastasis of murine (Lewis lung carcinoma, LLC) and human (HCC827) lung cancer cells. The effect of LECT2 on in vitro cell proliferation was evaluated, using MTS and colony formation assays. The effect of LECT2 on cell motility was evaluated using transwell migration and invasion assays. An enzyme-linked immunosorbent assay was performed to detect secreted LECT2 in plasma and media. Co-immunoprecipitation and Western blot assays were used to investigate the underlying mechanisms of LECT2 in NSCLC cells. RESULTS: Compared to WT mice, mice with LECT2 deletion exhibited enhanced growth and metastasis of LLC cells, and survival times decreased in LLC-implanted mice. Overexpression of LECT2 in orthotopic human HCC827 xenografts in NSG mice resulted in significant inhibition of tumor growth and metastasis. In vitro, overexpression of LECT2 or treatment with a recombinant LECT2 protein impaired the colony-forming ability and motility of NSCLC cells (HCC827 and PC9) harboring high levels of activated EGFR and MET. Mechanistic investigations found that LECT2 bound to MET and EGFR to antagonize their activation and further suppress their common downstream pathways: phosphatidylinositol 3-kinase/Akt and extracellular signal-regulated kinase. CONCLUSION: EGFR-MET signaling is critical for aggressive behaviors of NSCLC and is recognized as a therapeutic target for NSCLC especially for patients with acquired resistance to EGFR-TKI therapy. Our findings demonstrate, for the first time, that LECT2 functions as a suppressor of the progression of NSCLC by targeting EGFR-MET signaling.


Assuntos
Receptores ErbB/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Metástase Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Lett ; 433: 86-98, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29960050

RESUMO

N-α-Acetyltransferase 10 protein (Naa10p) mediates N-terminal acetylation of nascent proteins. Oncogenic or tumor suppressive roles of Naa10p were reported in cancers. Here, we report an oncogenic role of Naa10p in promoting metastasis of osteosarcomas. Higher NAA10 transcripts were observed in metastatic osteosarcoma tissues compared to non-metastatic tissues and were also correlated with a worse prognosis of patients. Knockdown and overexpression of Naa10p in osteosarcoma cells respectively led to decreased and increased cell migratory/invasive abilities. Re-expression of Naa10p, but not an enzymatically inactive mutant, relieved suppression of the invasive ability in vitro and metastasis in vivo imposed by Naa10p-knockdown. According to protease array screening, we identified that matrix metalloproteinase (MMP)-2 was responsible for the Naa10p-induced invasive phenotype. Naa10p was directly associated with MMP-2 protein through its acetyltransferase domain and maintained MMP-2 protein stability via NatA complex activity. MMP-2 expression levels were also significantly correlated with Naa10p levels in osteosarcoma tissues. These results reveal a novel function of Naa10p in the regulation of cell invasiveness by preventing MMP-2 protein degradation that is crucial during osteosarcoma metastasis.


Assuntos
Neoplasias Encefálicas/patologia , Metaloproteinase 2 da Matriz/metabolismo , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Osteossarcoma/patologia , Acetilação , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metaloproteinase 2 da Matriz/genética , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Osteossarcoma/genética , Osteossarcoma/metabolismo , Prognóstico , Estabilidade Proteica , Regulação para Cima
17.
Ann Surg Oncol ; 25(8): 2449-2456, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29948421

RESUMO

BACKGROUND: No effective targeted therapy exists for esophageal squamous cell carcinoma (ESCC), the major cell type of esophageal cancer. The pleiotropic cytokine interleukin (IL)-6 is associated with adverse prognosis of some cancers, and the open reading frame of IL-6 contains an miR-608 microRNA-targeted site. We investigated the correlation of circulating IL-6 levels with prognosis and with the mir608:rs4919510 genetic polymorphism in ESCC. METHODS: A total of 213 patients with primary ESCC were enrolled. Plasma IL-6 levels of ESCC patients were analyzed by enzyme-linked immunosorbent assay (ELISA). The patients' genotypes of mir608:rs4919510 were analyzed using the MassARRAY system, and functional assays were performed by transient overexpression in cells. The cytotoxicity of IL-6 signaling blockers in ESCC cells was analyzed by MTT assay. RESULTS: We found that plasma IL-6 levels significantly correlated with overall survival (p = 0.019), disease recurrence (p = 0.003), and postoperative complications (p =0.002). Patients with the GG genotype of mir608:rs4919510 had a 4.56-fold increased risk of high expression of IL-6 compared with patients with the CC genotype (odds ratio 4.56, 95% confidence interval 1.87-11.09; p =0.001). Transient overexpression of the miR-608 C (miR-608_C) and G variants (miR-608_G) in cancer cells revealed that the miR-608_G variant was less efficient in regulating the expression of IL-6 compared with miR-608_C. Finally, the IL-6 signaling blocker ruxolitinib exhibited effective cytotoxicity in ESCC cells. CONCLUSIONS: The results of this study provide a novel direction for a biomarker-based targeted therapy for ESCC.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Interleucina-6/sangue , MicroRNAs/genética , Recidiva Local de Neoplasia/patologia , Polimorfismo de Nucleotídeo Único , Idoso , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/cirurgia , Neoplasias Esofágicas/sangue , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/cirurgia , Esofagectomia , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/cirurgia , Complicações Pós-Operatórias , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
18.
Cancer Lett ; 421: 28-40, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29408265

RESUMO

Cancer cells encounter metabolic stresses such as hypoxia and nutrient limitations because they grow and divide more quickly than their normal counterparts. In response to glucose restriction, we found that nuclear translocation of the glycolic enzyme, pyruvate kinase M2 (PKM2), helped cancer cells survive under the metabolic stress. Restriction of glucose stimulated AMPK activation and resulted in co-translocation of AMPK and PKM2 through Ran-mediated nuclear transport. Nuclear PKM2 subsequently bound to Oct4 and promoted the expression of cancer stemness-related genes, which might enrich the cancer stem cell population under the metabolic stress. Nuclear PKM2 was also capable of promoting cancer metastasis in an orthotopic xenograft model. In summary, we found that cytosolic AMPK helped PKM2 carry out its nonmetabolic functions in the nucleus under glucose restriction and that nuclear PKM2 promoted cancer stemness and metastasis. These findings suggested a potential new targeting pathway for cancer therapy in the future.


Assuntos
Adaptação Fisiológica/fisiologia , Adenilato Quinase/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/metabolismo , Estresse Fisiológico/fisiologia , Hormônios Tireóideos/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
19.
Oncogene ; 37(13): 1730-1742, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29335522

RESUMO

Pyruvate kinase muscle isozymes (PKMs) have crucial roles in regulating metabolic changes during carcinogenesis. A switch from PKM1 to PKM2 isoform was thought to lead to aerobic glycolysis promoting carcinogenesis, and was considered as one of the cancer signatures. However, recent evidence has argued against the existence of PKM isoform switch and related metabolic effects during cancer progression. We compared the effects of PKM1 and PKM2 in cell invasiveness and metastasis of pancreatic ductal adenocarcinoma (PDAC). Both PKM1 and PKM2 expression affected cell migration and invasion abilities of PDAC cells, but only knockdown of PKM2 suppressed metastasis in a xenograft model. By comparing the established PKM2 mutants in the regulation of cell invasion, we found that PKM2 may control cell mobility through its protein kinase and phopho-peptide binding abilities. Further survey for PKM2-associated proteins identified PAK2 as a possible phosphorylation target in PDAC. In vitro binding and kinase assays revealed that PKM2 directly phosphorylated PAK2 at Ser20, Ser141, and Ser192/197. Knockdown of PKM2 decreased PAK2 protein half-life by increasing ubiquitin-dependent proteasomal degradation. Moreover, we identified PAK2 as an HSP90 client protein and the mutation at Ser192/197 of PAK2 reduced PAK2-HSP90 association. Knockdown of PAK2 diminished in vitro cell mobility and in vivo metastatic ability of PKM2 overexpressed PDAC cells. PKM2 and PAK2 protein expression also positively correlated with each other in PDAC tissues. Our findings indicate that PKM2-PAK2 regulation is critical for developing metastasis in PDAC, and suggest that targeting the PKM2/HSP90/PAK2 complex has a potential therapeutic value in this deadly disease.


Assuntos
Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Piruvato Quinase/fisiologia , Quinases Ativadas por p21/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Movimento Celular/genética , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosforilação/genética , Processamento de Proteína Pós-Traducional/genética , Estabilidade Proteica , Piruvato Quinase/genética , Quinases Ativadas por p21/genética
20.
Cancer Res ; 78(1): 216-229, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093007

RESUMO

Increasing evidence suggests that there is a unique cell subpopulation in melanoma that can form nonadherent melanospheres in serum-free stem cell medium, mimicking aggressive malignancy. Using melanospheres as a model to investigate progression mechanisms, we found that miR-519d overexpression was sufficient to promote cell proliferation, migration, invasion, and adhesion in vitro and lung metastatic capability in vivo The cell adhesion receptor EphA4 was determined to be a direct target of miR-519d. Forced expression of EphA4 reversed the effects of miR-519d overexpression, whereas silencing of EphA4 phenocopied the effect of miR-519d. Malignant progression phenotypes were also affected at the level of epithelial-to-mesenchymal transition and the ERK1/2 signaling pathway inversely affected by miR-519d or EphA4 expression. In clinical specimens of metastatic melanoma, we observed significant upregulation of miR-519d and downregulation of EphA4, in the latter case correlated inversely with overall survival. Taken together, our results suggest a significant functional role for miR-519d in determining EphA4 expression and melanoma progression.Significance: These results suggest a significant role for miR-519d in determining expression of a pivotal cell adhesion molecule that may impact risks of malignant progression in many cancers. Cancer Res; 78(1); 216-29. ©2017 AACR.


Assuntos
Melanoma/genética , Melanoma/patologia , MicroRNAs/genética , Receptor EphA4/genética , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Masculino , Camundongos SCID , Receptor EphA4/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...